

GLAST Monthly PSR – April 7, 2004

Systems Engineering

RFA Status

Systems approved 22 RFA responses last month. There are still 30 responses in the Systems review process. Continued to work with Spectrum and SLAC to revise/edit comments per Project comments.

PM approved 12 RFA responses last month. Working to update responses based on PM comments to other 10 RFAs that were sent last month.

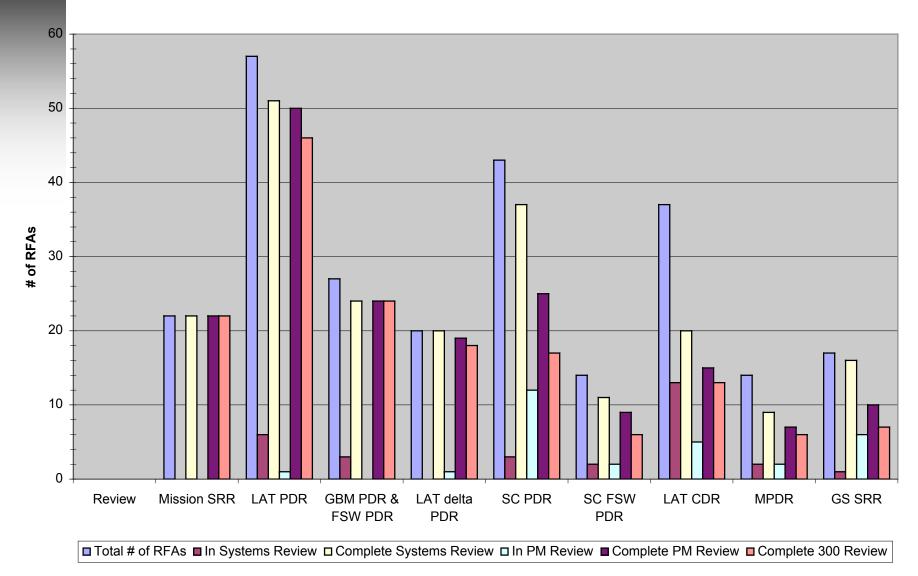
- Received Originator approval for 28 RFA responses last month.

 Provided 5 updated responses to Originators based on their comments.

 4 have been approved.
- υ We are only waiting for 11 more RFA responses:
 - 3 from SC PDR (all GPO): Use of Excess ELV Mass Margin, Low Obs. Mass Margin, & Early Prop Test
 - 1 from SC FSW PDR (GPO): Consider 2nd Hot Bench
 - 4 from LAT CDR
 - 3 from MPDR (all GPO): Open ICD Issues, RAD750 Upsets, LAT Choke Points
- In addition to needing above responses, we need to resolve PRU Lambda Converters, Packaging/Manufacturing, and Over Current Protection RFAs prior to SC CDR & 8 Cmds/sec, FSW Formal Qualification, and Simulink model deliveries prior to SC FSW CDR.

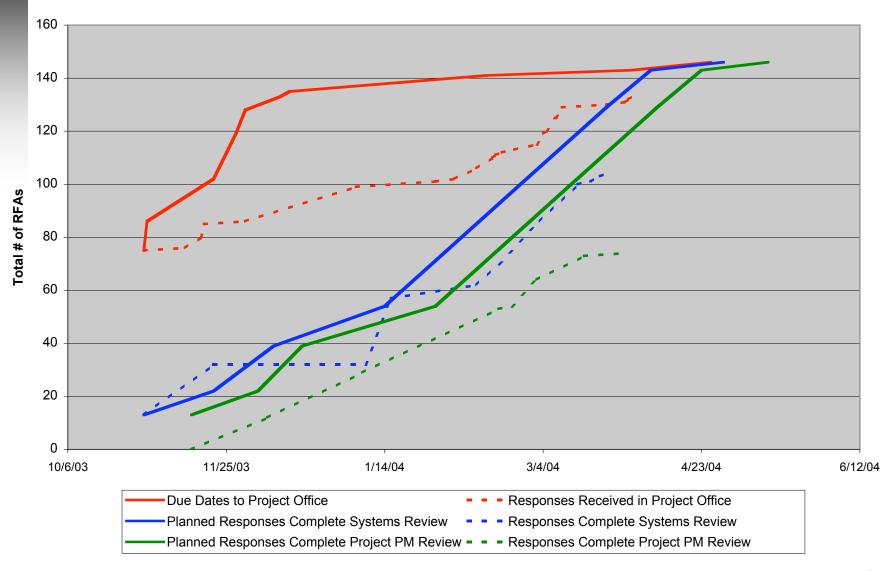
RFA Summary (Code 300 & SC Peer Reviews)

	Total # of RFAs	Systems Re	view Status	iew Status Project Review Status		Code 300 Status		
Review		In Review	Complete	In Review	Complete	# Closed	Notes	
Mission SRR	22		22		22	22	All Closed	
LAT PDR	57	6	51	1	50	46	11 Open	
GBM PDR & FSW PDR	27	3	24		24	24	3 Open, 1 Withdrawn	
LAT delta PDR	20		20	1	19	18	2 Open	
SC PDR	43	3	37	12	25	17	26 Open	
SC FSW PDR	14	2	11	2	9	6	8 Open	
LAT CDR	37	13	20	5	15	13	24 Open	
MPDR	14	2	9	2	7	6	8 Open	
GS SRR	17	1	16	6	10	7	10 Open	
Totals	251	30	210	29	181	159		


	Total # of RFAs	Total # of	Project Review Status		Originator Status	
Review		Recomm	In Review	Complete	# Closed	Notes
Systems	12	9				
I&T	14	1				
Structural Design	5	2				
Thermal	6	6				
Mechanisms	2	3				
C&DH	14	3				
COMM	22	2				
EPS	20	3				
GNC	6	4				
Fault Management	15	6				
Structural Analysis						
Totals	116	39				

RFA Response Summary Chart

RFA Status by Review



RFA Closure Plan vs. Actuals

RFA Closure Plan

GLAST Project CCR Status

1 CCB held in March (via telecon)

- 7 CCRs reviewed at the CCB, 5 approved, 2 deferred
 - Approved CDRL 1, GPS Antenna Thermal Control, LAT Thermal Model Size, LAT MOI, Update LAT Science Data Rate
 - 2 Deferred due to updates (Addition of LAPSS and Update to LAT-SC Drill Template and Flexures). Both have been updated and rereleased in the system
- 1 CCR approved out of board
 - 433-0230, Rev B to MOC SOW

Currently there are 15 CCRs in the System

- Removal of ISM, Update to GFE list, Reallocation of Burst Alert Latency, LAT DC Voltage Tolerance from 42 V to 40 V, Remove ISM, Add Ku levels to EMI, Update Delivery Date for LAT-SC Drill Template and Flexures, LAPSS
- SLAC has stated that the Project ITAR document is now in their legal review
- SSMAP still in Code 300 Review
- Spectrum did not hold their ERB during Peer Reviews, awaiting their response to numerous CCRs

Accomplishments

- Organized and Coordinated SC CDR Peer Reviews
 - 12 reviews and an MPSR
 - Thank you to all the supporting project engineers
 - Rollup of RFAs into Major, Significant Issues Underway
- Mission Robustness Special Study under review with Spectrum and GSFC contracts
 - Intended to add flexibility to initiation of special studies
 - Augmentation of Diagnostics & Troubleshooting Capability
 - Enhanced boot process diagnostics capability
 - · Capture of processor data in RAM, SSR or UDL
 - Enhanced IEM diagnostics
 - Command Authentication
 - Augmented Fault Detection, Isolation and Recovery.
- Review of CDRL 29 comments with Spectrum in progress
- Coordinated with DPM and GSFC engineering for delivery of TURFTS rack to Spectrum

Observatory STOP Analysis Status

- <u>Cycle 2</u>: Unit Thermal Gradient & Static Thermal Case Analysis w/ interim LAT CDR models
 - Results to be provided on 04/06/04
- Cycle 3: Observatory-Level STOP Analysis using final CDR models
 - Transient case analysis using worst-case on-orbit thermal cases identified (and C2 results)
 - LAT Models
 - 03/02/04 SLAC provided LAT FEM v10.08, v10.08S and TMM v5.0 to GPO/Swales
 - 03/19/04 Swales completed review of LAT FEM v10.08S and communicated concerns/feedback to SLAC
 - 03/31/04 Swales created LAT FEM v10.08S2 from v10.08 and reviewed updated v10.08S from SLAC
 - TBD SLAC performing thermal/mechanical distortion analysis using their v10.08S model
 - SC Models
 - 03/17/04 SAI performed FEM updates to accommodate flexure redesign and GBM mass increase
 - 04/04/04 SAI resolved TMM to FEM mapping issues
 - TBD SAI to provide TMM, FEM and model mapping to GPO/Swales
- Cycle 4: Observatory-Level STOP Analysis using T/V-correlated LAT models
- U Cycle 5: Observatory-Level STOP Analysis using T/V-correlated observatory models

Mass Budget

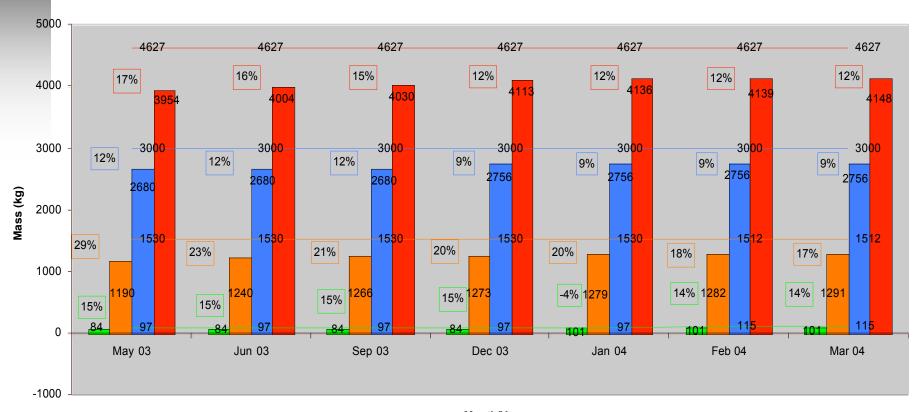
-		Mass (kg)				
		Allocation	Estimate	Margin	%	Delta
υ	Dry SC	1151	933	218	23	3
υ	SC including propellant	1512	1291	221	17	1
υ	LAT	3000	2756	244	9	0
υ	GBM	<u>115</u>	<u>101</u>	14	<u>13</u>	_0
υ	Observatory mass	4627	4149	479	12	10

GBM thermal solution mass lien -

Cluster radiator solution: 4 to 8 kg (.75 kg for 3 Nals X 4) + (.5kg X 2GBOs)
Teflon tape: No mass impact (roughly 100% more heater power than cluster radiator solution)

Delta II Heavy throw weight to 575 km with cg at 1.37 m = 4627 kg

70% of LAT mass estimate is measured


LAT is carrying 30% margin on the unmeasured LAT mass of 827 kg

Observatory Mass Growth

Observatory Mass Growth

Month/Yr

GBM Mass Spacecraft Mass LAT Mass Observatory Mass GBM Diff SC Diff

Power Budget

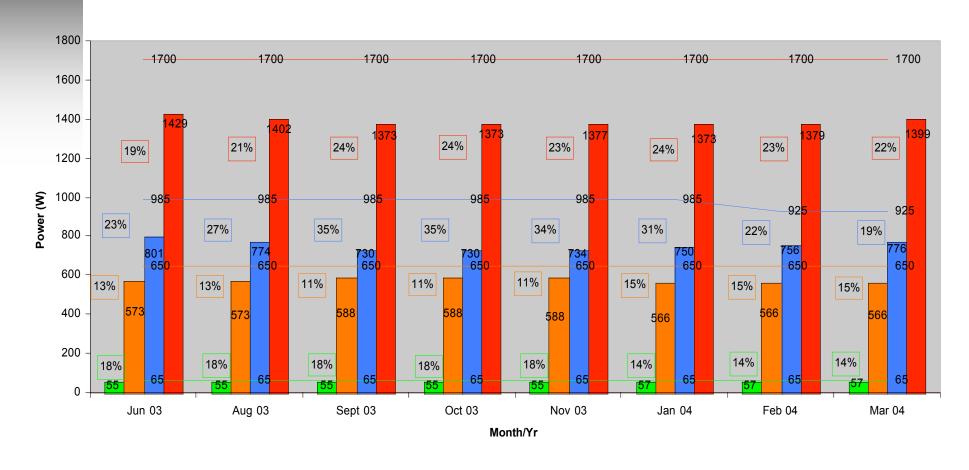
Orbit Average	Power	(Watts)
----------------------	-------	---------

	Allocation	Estimate	Margin	%	Margin Delta
Spacecraft	985	752	233	31.0	- 4
LAT	650	566	84	14.9	0
GBM	<u>65</u>	<u>57</u>	_8_	<u>14.0</u>	_0
Observatory total	1700	1375	326	23.7	-4

GBM thermal solution power lien (analysis incomplete – relative comparison of solutions) Cluster radiator solution: all elements at worst case (to be rationalized) – 50 W
Teflon tape: all elements at worst case (to be rationalized) – 120 W

LAT Orbit average survival power: 278 W

Regulated VCHP power 58 W + Unregulated Passive Survival Power 220 W Estimates do not reflect transition into or out of survival mode, only steady state orbit average.


72% of LAT science mode power (406 W) is categorized as measured. LAT is carrying 52% margin on unmeasured power of 160 W.

Observatory Power Growth

Observatory Power Growth

Observatory Thermal Metrics

	Spacecraft	LAT	GBM	
	(Pre CDR Peer Rev)	(CDR)	(Post-CDR)	
Number of Component Temp. Limits	52	13	4	
Number of Component Temp. Exceedances	0	0	tbd	
Number of Component Temp. Margin Exceedances	3 hot, 1 cold	0	tbd	
Number of dT/dt Limits	1 (GPS ant)	1	1	
Number of dT/dt Exceedances	0	\ 0	tbd	
Number of dT/dx, dT/dy, dT/dz Limits	2 (Opt Bench, Battery)	\ 0	0	
Number of dT/dx, dT/dy, dT/dz Exceedances	0	0	0	
Op Orbit Average Heater Pow Margin (vs. Allocation)	4%	63%	tbd	
Surv Orbit Average Heater Pow Margin (vs. Allocation)	19%	\28%	tbd	
		\		
Radiator Area Margin (vs. Available)	11%	ά%	tbd	
Definitions:				
Definitions.				
Temperature Margin Philosophy: Predictions demonstrate	e +/- 5C against Flight Allo	owable Temperatu	re (FAT) Limits	
Note: For heater controlled areas 5C margin is waived.		-\		
		\		
Temperature Exceedance: Temperature Predict > Flight A	•	•	ign Limits)	
Temperature Margin Exceedance: Temperature Flight Allo	wable Limit - Temperature	e Predict < 5C		
Op Heater Power Margin (Orbit Average): (Allocation-Pred	lict)/Allocation *100		\	
Surv Heater Power Margin (Orbit Average): (Allocation-Pre	dict)/Allocation * 100			
Note: Heaters are sized to maintain a 30% control authority	/ margin at selected minin	num conditions.		
				atteries, GBM PSB (Goal would
Radiator Area Margin: (Available-Utilized)/Available * 100				9C) and Reaction Wheel(s)
				, predict = 47C). None of these ed to meet the margin goal
			given existing radia	
No Changes since last	100 0 10 10		For Colds This and 11 11	. hand Antonia markenian
No Changes since last	IIIOIIII		· · · · · · · · · · · · · · · · · · ·	u-band Antenna mechanism and modeled the heater correctly
			since the change to Ku -	'

Priority 1 Issues Outcome Could Impact Baseline

•Structural analysis (CLA, STOP, stress and lifting)

•EPS Issues:

- EPS undervoltage issue (RFA)
- EPS detailed energy balance calculations (RFA)
- PRU overvoltage protection (aka 42V requirement) (RFA)
- Transorb lifetime (RFA) possible PRU re-design for a crowbar and simultaneous solution of 42V problem
- Fusing LAT polyfuse implementation
 Close end-to-end fusing analysis by mission CDR
- FMEA, FTA, detailed reliability analysis

 CDRL due Friday April 9th
- •EMI/EMC design, flowdown and compliance status

 Fred must approve RFAs before SC CDR
- S-band antenna study & percent coverage (RFA)

Priority 1 Issues Outcome Could Impact Baseline

- · Solar Array Kapton:
 - Cut cost of 5 mil qual program

 Review basis for Spectrum ROM
 - Examine impacts of higher intial orbit than 575 km

 Kapton erosion mitigation

 Science impacts

Analysis underway for 1 mil residual at 5 and 10 year orbit life Issues

Extra fuel for de-orbit from higher altitude

Qual observatory for new environment

- Re-boost

Exhaust boost plume impingement Ops impacts

Priority 2 Issues Must be Completed for SC CDR

- MAR flowdown status
- Analysis and documentation of requirements
 - flowdown to PFSs, SOWs and purchase orders
- GNC stability analysis (RFA)
 - Frequency domain need it for all control modes and loops
 - Must be done by SC CDR
- SC CDR Peer Review RFAs
 - GPO Systems Executive Co-chairs responsible for status & closure
 - Action rank and classify RFAs
- Observatory mass capability beyond the baseline
 - Need assessments from:

SMS

GNC

Propulsion

- RFA closure process
- Mass margin including ballast

Priority 2 Issues Must be Completed for SC CDR

- TDRSS scheduling impacts to SC design for SN return links after re-points
- Instrument verification matrices delivered to SAI
- Fault management issues
 - ARM Single Point Failure can fail in CPU reset state (RFA)
- CCRs

Create ROM for Integrating Instrument Interface Simulators With MTS

Change to AO Specs

Update GFE List

EMI requirements for Ku band

SRD

- Burst Alert latency estimates square w/ Spectrum
- •Re-entry Peer Review
- ·Risk Management

Ku band failure

- Close CDRL 29 pre-CDR review cycle
- Plan and format for CDR dry runs
 - Issue closures
 - Presentation rehearsal

Near-term Schedule

Moog APM CDR (w/ SADA) April 13

v Structures (Analysis) Peer Review April 14

υ FSW Peer Review April 15-16

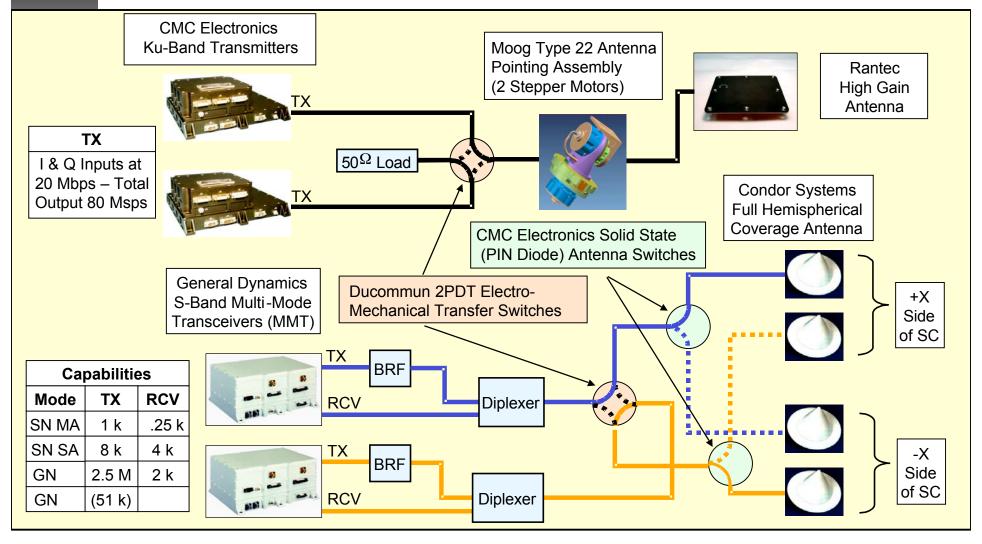
υ SC CDR Dry Run Week of April 19

v PRU Roadshow May TBD

v SC CDR Week of May 24

v Ku Band TIM #2 (~CDR) June 8

APRIL								
S	M	Т	W	Т	F	S		
				2 EMI CDRLs Due	2	3		
				Final Minutes and Actio Each Pee				
4	5	6	-		9 2 CDRLs Due	10		
		Final Minutes and Ac	Review and S tion Items Written Up Fo	_				
11	12		Structural Analysis	FSW CDR	FSW CDR CDR Charts Repro.	17		
		CE	RL Review and Signature	ė				
	Run GLAST MPSR	Run	GLAST CDR Dry Run	GLAST CDR Dry Run	GLAST CDR Dry Run (11) GLAST CDRLs Due			
25	26	27	28	29	30			


Upcoming Meetings

	MAY								
S	M	Т	W	T	F	S			
						1			
	GLAST President's Review	LAT SIIS Del. (5/4- 5/7) GLAST Pres. Review Prep	Preparation for GLAST President's Review	GLAST President's Review	Final CDR Packages Due to Systems Engineering	8			
	PM/SE Review of CDR Package	Final Chart Updates for	12 Repro	GLAST PMR CDR Chart Package to GPO and Repro	14	15			
16	17	18	19	20	21	22			
			ORL Review and Signature						
		GLAST CDR	GLAST CDR	GLAST CDR (10) CDRLs Due	28	29			
30	31								

BACKUP SLIDE TELECOM SUBSYSTEM BLOCK DIAGRAM

